Issue |
A&A
Volume 589, May 2016
|
|
---|---|---|
Article Number | A11 | |
Number of page(s) | 15 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/201528008 | |
Published online | 05 April 2016 |
The Herschel Virgo Cluster Survey
XIX. Physical properties of low luminosity FIR sources at z < 0.5⋆
1
Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatório
Astronómico de Lisboa,
Tapada da Ajuda,
1349-018
Lisboa,
Portugal
e-mail:
[email protected]
2
Instituto de Astrofísica e Ciencias do Espaço, Universidade de
Lisboa, OAL, Tapada da
Ajuda, 1349-018
Lisboa,
Portugal
3
Max-Planck-Institute für Extraterrestrial Physik,
Giessenbachstrasse
1, 85748
Garching bei München,
Germany
4
Instituto de Radioastronomía y Astrofísica,
CRyA, UNAM, Campus Morelia, A.P.
3-72,
CP 58089
Michoacán,
Mexico
5
Aix-Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique
de Marseille) UMR 7326, 13388
Marseille,
France
6
Sterrenkundig Observatorium, Universiteit Gent,
Krijgslaan 281 S9,
9000
Gent,
Belgium
7
Department of Physics, University of Crete,
71003
Heraklion,
Greece
8
Osservatorio Astrofisico di Arcetri INAF, Largo E. Fermi 5,
50125
Firenze,
Italy
9
Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
10
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge, CB3 0HA, UK
11
UK ALMA Regional Centre Node, Jodrell Bank Centre for
Astrophysics, School of Physics and Astronomy, The University of Manchester,
Oxford Road,
Manchester
M13 9PL,
UK
12
Dept. of Physics & Astronomy, University College
London, Gower
Street, London
WC1E 6BT,
UK
13
Department of Physics and Astronomy, Cardiff
University, The
Parade, Cardiff,
CF24 3AA,
UK
14
Unidad de Astronomia, Facultad de Ciencias Basicas, Universidad de
Antofagasta, Avenida Angamos
601, Antofagasta
02800, Chile
Received: 18 December 2015
Accepted: 29 January 2016
Context. The star formation rate is a crucial parameter for the investigation galaxy evolution. At low redshift the cosmic star formation rate density declines smoothly, and massive active galaxies become passive, reducing their star formation activity. This implies that the bulk of the star formation rate density at low redshift is mainly driven by low mass objects.
Aims. We investigate the properties of a sample of low luminosity far-infrared sources selected at 250 μm. We have collected data from ultraviolet to far-infrared in order to perform a multiwavelengths analysis. The main goal is to investigate the correlation between star formation rate, stellar mass, and dust mass for a galaxy population with a wide range in dust content and stellar mass, including the low mass regime that most probably dominates the star formation rate density at low redshift.
Methods. We define a main sample of ~800 sources with full spectral energy distribution coverage between 0.15 <λ< 500 μm and an extended sample with ~5000 sources in which we remove the constraints on the ultraviolet and near-infrared bands. We analyze both samples with two different spectral energy distribution fitting methods: MAGPHYS and CIGALE, which interpret a galaxy spectral energy distribution as a combination of different simple stellar population libraries and dust emission templates.
Results. In the star formation rate versus stellar mass plane our samples occupy a region included between local spirals and higher redshift star forming galaxies. These galaxies represent the population that at z< 0.5 quenches their star formation activity and reduces their contribution to the cosmic star formation rate density. The subsample of galaxies with the higher masses (M∗> 3 × 1010 M⊙) do not lie on the main sequence, but show a small offset as a consequence of the decreased star formation. Low mass galaxies (M∗< 1 × 1010 M⊙) settle in the main sequence with star formation rate and stellar mass consistent with local spirals.
Conclusions. Deep Herschel data allow the identification of a mixed galaxy population with galaxies still in an assembly phase or galaxies at the beginning of their passive evolution. We find that the dust luminosity is the parameter that allow us to discriminate between these two galaxy populations. The median spectral energy distribution shows that even at low star formation rate our galaxy sample has a higher mid-infrared emission than previously predicted.
Key words: methods: data analysis / galaxies: evolution / galaxies: photometry / galaxies: statistics / infrared: galaxies / submillimeter: galaxies
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.